Translations:Mezenchymalne komórki macierzyste/3/en: Różnice pomiędzy wersjami

Z BINWIT
Przejdź do nawigacji Przejdź do wyszukiwania
(Utworzono nową stronę "*'''Bone marrow''': abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow-derived MSCs are...")
 
 
Linia 1: Linia 1:
*'''Bone marrow''': abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow-derived MSCs are an attractive material for therapeutic purposes, although their differentiation potential depends on many factors, including the age of the donor, however, a certain limitation of obtaining MSC from the bone marrow is the procedure of their collection, which is an invasive method <ref>Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997 Apr 4;276(5309):71-4. doi: 10.1126/science.276.5309.71</ref> <ref>Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005 Jul 8;309(5732):314-7. doi: 10.1126/science.1110364</ref> <ref>Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019 Jun 26;11(6):347-374. doi: 10.4252/wjsc.v11.i6.347</ref>.
*'''Bone marrow''': abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow-derived MSCs are an attractive material for therapeutic purposes, although their differentiation potential depends on many factors, including the age of the donor, however, a certain limitation of obtaining MSC from the bone marrow is the procedure of their collection, which is an invasive method <ref>Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997 Apr 4;276(5309):71-4. doi: 10.1126/science.276.5309.71</ref> <ref>Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005 Jul 8;309(5732):314-7. doi: 10.1126/science.1110364</ref>
*'''Adipose tissue''': rich in MSCs that are highly proliferative, easily obtainable through liposuction, and capable of differentiating into cells of adipogenic, osteogenic, chondrogenic and myogenic lineages <ref>Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019 Jun 26;11(6):347-374. doi: 10.4252/wjsc.v11.i6.347</ref>.
*'''Adipose tissue''': rich in MSCs that are highly proliferative, easily obtainable through liposuction, and capable of differentiating into cells of adipogenic, osteogenic, chondrogenic and myogenic lineages.
*'''Skeletal muscle''': distinct from the exclusively myogenic satellite cells, muscle-derived MSCs are capable of differentiation into cells of osteogenic and chondrogenic lineages , however, they are primarily used to repair skeletal muscle tissue. They are characterised by high self-renewal properties, and can be obtained by biopsy from any muscle of the body <ref>Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018 Oct;66(5):341-354. doi: 10.1007/s00005-018-0509-7. Epub 2018 Mar 13</ref> <ref>Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019 Jun 26;11(6):347-374. doi: 10.4252/wjsc.v11.i6.347</ref>.
*'''Skeletal muscle''': distinct from the exclusively myogenic satellite cells, muscle-derived MSCs are capable of differentiation into cells of osteogenic and chondrogenic lineages , however, they are primarily used to repair skeletal muscle tissue. They are characterised by high self-renewal properties, and can be obtained by biopsy from any muscle of the body <ref>Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018 Oct;66(5):341-354. doi: 10.1007/s00005-018-0509-7. Epub 2018 Mar 13</ref>
*'''Skin''': a source of highly proliferative cells, used especially for dermis regeneration, e.g. in treatment of extensive burns, but also capable of differentiation into myo-, adipo-, osteo- and chondrocytes, as well as neural and pancreatic cells. MSCs can be also isolated from hair follicles, which is probably the most easy and non-invasive way of obtaining stem cells; hair follicle MSCs can undergo adipogenesis and osteogenesis <ref>Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019 Jun 26;11(6):347-374. doi: 10.4252/wjsc.v11.i6.347</ref> <ref>Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells. 2020 Jun 26;12(6):462-470. doi: 10.4252/wjsc.v12.i6.462</ref> <ref>Savkovic V, Li H, Obradovic D, Masieri FF, Bartella AK, Zimmerer R, Simon JC, Etz C, Lethaus B. The Angiogenic Potential of Mesenchymal Stem Cells from the Hair Follicle Outer Root Sheath. J Clin Med. 2021 Feb 26;10(5):911. doi: 10.3390/jcm10050911</ref>.
*'''Skin''': a source of highly proliferative cells, used especially for dermis regeneration, e.g. in treatment of extensive burns, but also capable of differentiation into myo-, adipo-, osteo- and chondrocytes, as well as neural and pancreatic cells. MSCs can be also isolated from hair follicles, which is probably the most easy and non-invasive way of obtaining stem cells; hair follicle MSCs can undergo adipogenesis and osteogenesis <ref>Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells. 2020 Jun 26;12(6):462-470. doi: 10.4252/wjsc.v12.i6.462</ref> <ref>Savkovic V, Li H, Obradovic D, Masieri FF, Bartella AK, Zimmerer R, Simon JC, Etz C, Lethaus B. The Angiogenic Potential of Mesenchymal Stem Cells from the Hair Follicle Outer Root Sheath. J Clin Med. 2021 Feb 26;10(5):911. doi: 10.3390/jcm10050911</ref>.
*'''Dental pulp''': an easily accessible source of MSCs during dental surgeries. Dental pulp MSCs are usually used for bone and neural regeneration; their chondrogenic differentiation capacity is limited compared to other types of MSCs. However, some studies show a decrease in the proliferative activity of MSCs isolated from the dental pulp associated with the number of passages of cultivation time <ref>Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018 Apr;20(4):479-498. doi: 10.1016/j.jcyt.2017.12.011. Epub 2018 Feb 12</ref> <ref>Alraies A, Waddington RJ, Sloan AJ, Moseley R. Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. Biomed Res Int. 2020 Sep 10;2020:3034727. doi: 10.1155/2020/3034727</ref>.  
*'''Dental pulp''': an easily accessible source of MSCs during dental surgeries. Dental pulp MSCs are usually used for bone and neural regeneration; their chondrogenic differentiation capacity is limited compared to other types of MSCs. However, some studies show a decrease in the proliferative activity of MSCs isolated from the dental pulp associated with the number of passages of cultivation time <ref>Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018 Apr;20(4):479-498. doi: 10.1016/j.jcyt.2017.12.011. Epub 2018 Feb 12</ref> <ref>Alraies A, Waddington RJ, Sloan AJ, Moseley R. Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. Biomed Res Int. 2020 Sep 10;2020:3034727. doi: 10.1155/2020/3034727</ref>.  
*'''Placenta''': abundant in MSCs characterised by high proliferation rates and strong immunosuppressive effects, capable of differentiation into e.g. hepatocytes or pancreatic cells <ref>Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med. 2011 Jan;6(1):95-109. doi: 10.2217/rme.10.98</ref> <ref>Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells. 2020 Dec 26;12(12):1511-1528. doi: 10.4252/wjsc.v12.i12.1511</ref>.
*'''Placenta''': abundant in MSCs characterised by high proliferation rates and strong immunosuppressive effects, capable of differentiation into e.g. hepatocytes or pancreatic cells <ref>Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med. 2011 Jan;6(1):95-109. doi: 10.2217/rme.10.98</ref> <ref>Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells. 2020 Dec 26;12(12):1511-1528. doi: 10.4252/wjsc.v12.i12.1511</ref>.
*'''Amniotic fluid''': MSCs originating from amniotic fluid are mainly used alongside surgery as autologous material to aid organ repair in treatment of congenital birth anomalies such as spina bifida, diaphragmatic hernia or cardiac defects. Amniotic fluid is accessible by needle aspiration, and only small quantities are necessary to establish a cell culture, as they have ability to proliferate rapidly.
*'''Amniotic fluid''': MSCs originating from amniotic fluid are mainly used alongside surgery as autologous material to aid organ repair in treatment of congenital birth anomalies such as spina bifida, diaphragmatic hernia or cardiac defects. Amniotic fluid is accessible by needle aspiration, and only small quantities are necessary to establish a cell culture, as they have ability to proliferate rapidly.

Aktualna wersja na dzień 08:43, 25 cze 2021

Objaśnienie komunikatu (zmień)
Ten komunikat nie posiada dokumentacji. Jeśli wiesz gdzie lub jak ten komunikat jest używany, możesz pomóc innym tłumaczom przez dodanie dokumentacji do tego komunikatu.
Tekst źródłowy komunikatu (Mezenchymalne komórki macierzyste)
*'''Szpik kostny'''. Zawiera MSC zdolne do różnicowania w wiele typów komórek, w tym osteoblasty, chondrocyty, hepatocyty i inne. MSC pochodzące ze szpiku kostnego stanowią atrakcyjny materiał dla celów terapeutycznych, chociaż ich potencjał różnicowania zależy od wielu czynników między innymi od wieku dawcy. Pewnym ograniczeniem pozyskiwania MSC ze szpiku jest procedura ich pobrania, która należy do metod inwazyjnych <ref>Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997 Apr 4;276(5309):71-4. doi: 10.1126/science.276.5309.71</ref> <ref>Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005 Jul 8;309(5732):314-7. doi: 10.1126/science.1110364</ref> 
*'''Tkanka tłuszczowa'''. Bogata w MSC obdarzone wysoką zdolnością proliferacji, łatwe do pozyskania metodą liposukcji i różnicujące się w komórki tkanki tłuszczowej, kostnej, chrzęstnej oraz mięśniowej 
*'''Mięsień szkieletowy'''. W odróżnieniu od unipotencjalnych komórek satelitowych, różnicujących się jedynie w komórki miogenne, MSC pochodzące z mięśni szkieletowych zdolne są także do osteo- oraz chondrogenezy, aczkolwiek stosowane są głównie do regeneracji tkanek mięśni szkieletowych. Charakteryzują się wysoką zdolnością odnawiania się i można je pozyskać metodą biopsji z dowolnego mięśnia pacjenta <ref>Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018 Oct;66(5):341-354. doi: 10.1007/s00005-018-0509-7</ref>
*'''Skóra'''. Stanowi źródło komórek MSC o dużej zdolności proliferacyjnej. Najczęściej stosowane są w regeneracji tkanki, z której się wywodzą tj. skóry np. w leczeniu ciężkich rozległych oparzeń; są również zdolne do różnicowania w mio-, adipo-, osteo- oraz chondrocyty, a także komórki układu nerwowego lub trzustki.  MSC można także wyizolować z mieszków włosowych, co jest prawdopodobnie najłatwiejszą oraz najmniej inwazyjną metodą pozyskania komórek macierzystych; MSC z mieszka włosowego posiadają zdolność adipo- oraz osteogenezy  <ref>Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells. 2020 Jun 26;12(6):462-470. doi: 10.4252/wjsc.v12.i6.462</ref> <ref>Savkovic V, Li H, Obradovic D, Masieri FF, Bartella AK, Zimmerer R, Simon JC, Etz C, Lethaus B. The Angiogenic Potential of Mesenchymal Stem Cells from the Hair Follicle Outer Root Sheath. J Clin Med. 2021 Feb 26;10(5):911. doi: 10.3390/jcm10050911</ref>.
*'''Miazga zęba'''. Ekstrakcja zębów jest jedną z powszechnie wykonywanych procedur dentystycznych, zatem miazga zęba może być łatwo dostępnym źródłem komórek macierzystych. MSC z miazgi zęba są najczęściej wykorzystywane do regeneracji tkanki kostnej lub nerwowej; natomiast ich zdolność do chondrogenezy jest ograniczona w porównaniu z innymi rodzajami MSC. Ponadto, niektóre badania wykazują spadek aktywności proliferacyjnej MSC izolowanych z miazgi zęba wraz z upływem czasu hodowli i liczby pasaży <ref>Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018 Apr;20(4):479-498. doi: 10.1016/j.jcyt.2017.12.011. Epub 2018 Feb 12</ref> <ref>Alraies A, Waddington RJ, Sloan AJ, Moseley R. Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. Biomed Res Int. 2020 Sep 10;2020:3034727. doi: 10.1155/2020/3034727</ref>.
*'''Łożysko'''. Bogate źródło MSC charakteryzujących się wysokim tempem proliferacji oraz silnym efektem immunosupresyjnym. Jako jedne z niewielu, MSC pozyskane z łożyska są także zdolne do różnicowania w hepatocyty oraz komórki trzustki <ref>Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med. 2011 Jan;6(1):95-109. doi: 10.2217/rme.10.98</ref> <ref>Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells. 2020 Dec 26;12(12):1511-1528. doi: 10.4252/wjsc.v12.i12.1511</ref>.
*'''Płyn owodniowy'''. MSC pochodzące z płynu owodniowego najczęściej wykorzystuje się w układzie autologicznym, jako czynnik wspierający naprawę tkanek przy operacjach wrodzonych defektów takich jak rozszczep kręgosłupa, przepuklina przeponowa czy wady serca. Płyn owodniowy jest łatwy do pobrania za pomocą aspiracji; niewielka objętość jest wystarczająca dla założenia hodowli znajdujących się w nim komórek MSC, gdyż odznaczają się one wysokim tempem proliferacji.
  • Bone marrow: abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow-derived MSCs are an attractive material for therapeutic purposes, although their differentiation potential depends on many factors, including the age of the donor, however, a certain limitation of obtaining MSC from the bone marrow is the procedure of their collection, which is an invasive method [1] [2]
  • Adipose tissue: rich in MSCs that are highly proliferative, easily obtainable through liposuction, and capable of differentiating into cells of adipogenic, osteogenic, chondrogenic and myogenic lineages.
  • Skeletal muscle: distinct from the exclusively myogenic satellite cells, muscle-derived MSCs are capable of differentiation into cells of osteogenic and chondrogenic lineages , however, they are primarily used to repair skeletal muscle tissue. They are characterised by high self-renewal properties, and can be obtained by biopsy from any muscle of the body [3]
  • Skin: a source of highly proliferative cells, used especially for dermis regeneration, e.g. in treatment of extensive burns, but also capable of differentiation into myo-, adipo-, osteo- and chondrocytes, as well as neural and pancreatic cells. MSCs can be also isolated from hair follicles, which is probably the most easy and non-invasive way of obtaining stem cells; hair follicle MSCs can undergo adipogenesis and osteogenesis [4] [5].
  • Dental pulp: an easily accessible source of MSCs during dental surgeries. Dental pulp MSCs are usually used for bone and neural regeneration; their chondrogenic differentiation capacity is limited compared to other types of MSCs. However, some studies show a decrease in the proliferative activity of MSCs isolated from the dental pulp associated with the number of passages of cultivation time [6] [7].
  • Placenta: abundant in MSCs characterised by high proliferation rates and strong immunosuppressive effects, capable of differentiation into e.g. hepatocytes or pancreatic cells [8] [9].
  • Amniotic fluid: MSCs originating from amniotic fluid are mainly used alongside surgery as autologous material to aid organ repair in treatment of congenital birth anomalies such as spina bifida, diaphragmatic hernia or cardiac defects. Amniotic fluid is accessible by needle aspiration, and only small quantities are necessary to establish a cell culture, as they have ability to proliferate rapidly.
  1. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997 Apr 4;276(5309):71-4. doi: 10.1126/science.276.5309.71
  2. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005 Jul 8;309(5732):314-7. doi: 10.1126/science.1110364
  3. Klimczak A, Kozlowska U, Kurpisz M. Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies. Arch Immunol Ther Exp (Warsz). 2018 Oct;66(5):341-354. doi: 10.1007/s00005-018-0509-7. Epub 2018 Mar 13
  4. Wang B, Liu XM, Liu ZN, Wang Y, Han X, Lian AB, Mu Y, Jin MH, Liu JY. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J Stem Cells. 2020 Jun 26;12(6):462-470. doi: 10.4252/wjsc.v12.i6.462
  5. Savkovic V, Li H, Obradovic D, Masieri FF, Bartella AK, Zimmerer R, Simon JC, Etz C, Lethaus B. The Angiogenic Potential of Mesenchymal Stem Cells from the Hair Follicle Outer Root Sheath. J Clin Med. 2021 Feb 26;10(5):911. doi: 10.3390/jcm10050911
  6. Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018 Apr;20(4):479-498. doi: 10.1016/j.jcyt.2017.12.011. Epub 2018 Feb 12
  7. Alraies A, Waddington RJ, Sloan AJ, Moseley R. Evaluation of Dental Pulp Stem Cell Heterogeneity and Behaviour in 3D Type I Collagen Gels. Biomed Res Int. 2020 Sep 10;2020:3034727. doi: 10.1155/2020/3034727
  8. Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med. 2011 Jan;6(1):95-109. doi: 10.2217/rme.10.98
  9. Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells. 2020 Dec 26;12(12):1511-1528. doi: 10.4252/wjsc.v12.i12.1511