Somatyczne komórki macierzyste/en: Różnice pomiędzy wersjami

Z BINWIT
Przejdź do nawigacji Przejdź do wyszukiwania
(Utworzono nową stronę "=Sources of mesenchymal stem cells=")
(Utworzono nową stronę "*'''Bone marrow''': abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow MSCs have been pr...")
Linia 12: Linia 12:
=Sources of mesenchymal stem cells=
=Sources of mesenchymal stem cells=


*'''Szpik kostny'''. Zawiera MSC zdolne do różnicowania w wiele typów komórek, w tym osteoblasty, chondrocyty, hepatocyty i inne. MSC pochodzące ze szpiku kostnego stanowią efektywny materiał dla celów terapeutycznych, chociaż ich potencjał różnicowania zależy od wielu czynników między innymi od wieku dawcy. Niestety, procedura ich pobrania jest jedną z bardziej inwazyjnych metod pozyskiwania MSC.
*'''Bone marrow''': abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow MSCs have been proven effective for therapeutic uses, even though their differentiation potential depends on donor characteristics such as age; however, the collection of those cells is one of the most invasive procedures of obtaining MSCs.
*'''Tkanka tłuszczowa'''. Bogata w MSC obdarzone wysoką zdolnością proliferacji, łatwe do pozyskania metodą liposukcji i różnicujące się w komórki tkanki tłuszczowej, kostnej, chrzęstnej oraz mięśniowej.
*'''Adipose tissue''': rich in MSCs that are highly proliferative, easily obtainable through liposuction, and capable of differentiating into cells of adipogenic, osteogenic, chondrogenic and myogenic lineages.
*'''Mięsień szkieletowy'''. W odróżnieniu od unipotencjalnych komórek satelitowych, różnicujących się jedynie w komórki miogenne, MSC pochodzące z mięśni szkieletowych zdolne są także do osteo- oraz chondrogenezy, chociaż używa się ich głównie do naprawy tkanek mięśniowych, w tym mięśnia sercowego. Charakteryzują się wysoką zdolnością odnawiania się, i można je pozyskać metodą biopsji z dowolnego mięśnia pacjenta.  
* '''Skeletal muscle''': distinct from the exclusively myogenic satellite cells, muscle-derived MSCs are capable of differentiation into cells of osteogenic and chondrogenic lineages , however, they are primarily used to repair skeletal and cardiac muscle tissue. They are characterised by high self-renewal properties, and can be obtained by biopsy from any muscle of the body.  
*'''Skóra'''. Stanowi źródło komórek o dużej zdolności proliferacji. Najczęściej stosowane w regeneracji samej skóry, np. w leczeniu ciężkich oparzeń, ale są również zdolne do różnicowania w mio-, adipo-, osteo- oraz chondrocyty, a także komórki układu nerwowego lub trzustki. MSC można także wyizolować z mieszków włosowych, co jest prawdopodobnie najłatwiejszą oraz najmniej inwazyjną metodą pozyskania komórek macierzystych; MSC z mieszka włosowego posiadają zdolność adipo- oraz osteogenezy.
*'''Skin''': a source of highly proliferative cells, used especially for dermis reconstitution, e.g. in treatment of burns, but also capable of differentiation into myo-, adipo-, osteo- and chondrocytes, as well as neural and pancreatic cells. MSCs can be also isolated from hair follicles, which is probably the most easy and non-invasive way of obtaining stem cells; hair follicle MSCs can undergo adipogenesis and osteogenesis.  
*'''Miazga zęba'''. Jako że zabiegi dentystyczne stanowią powszechnie wykonywaną procedurę, miazga zęba jest łatwo dostępnym źródłem komórek macierzystych. MSC z miazgi zęba są najczęściej wykorzystywane do regeneracji tkanki kostnej lub nerwowej; natomiast ich zdolność do chondrogenezy jest ograniczona w porównaniu z innymi rodzajami MSC. Ponadto, niektóre badania wykazują spadek aktywności proliferacyjnej MSC miazgi wraz z upływem czasu.
*'''Dental pulp''': an easily accessible source of MSCs, as dental surgeries are common procedures. Dental pulp MSCs are usually used for bone and neural regeneration; their chondrogenic differentiation capacity is limited compared to other types of MSCs. They might also exhibit decreased proliferation over time.
*'''Łożysko'''. Bogate źródło MSC charakteryzujących się wysokim tempem proliferacji oraz silnym efektem immunosupresyjnym. Jako jedne z niewielu MSC są one także zdolne do różnicowania w hepatocyty oraz komórki trzustki.
*'''Placenta''': abundant in MSCs characterised by high proliferation rates and strong immunosuppressive effects, capable of differentiation into e.g. hepatocytes or pancreatic cells.
*'''Płyn owodniowy'''. MSC pochodzące z płynu owodniowego najczęściej wykorzystuje się w układzie autologicznym, jako czynnik wspierający naprawę tkanek przy operacjach wrodzonych defektów takich jak rozszczep kręgosłupa, przepuklina przeponowa czy wady serca. Płyn owodniowy jest łatwy do pobrania za pomocą igły; niewielka ilość jest wystarczająca dla założenia hodowli znajdujących się w nim komórek, gdyż odznaczają się one wysokim tempem proliferacji.
*'''Amniotic fluid''': MSCs sourced from amniotic fluid are mainly used alongside surgery as autologous material to aid organ repair in treatment of congenital birth anomalies such as spina bifida, diaphragmatic hernia or cardiac defects. Amniotic fluid is accessible by needle aspiration, and only small quantities are necessary to establish a cell culture, as they tend to proliferate rapidly.
* '''Krew obwodowa'''. Krew obwodowa jest łatwa do pobrania nawet w większych ilościach, niestety jednak jest ubogim źródłem komórek MSC. Ich potencjał do adipogenezy jest wyższy niż w przypadku MSC pochodzących ze szpiku kostnego, lecz zdolność do różnicowania w inne typy komórek jest niższa w porównaniu z wyżej wymienionymi rodzajami MSC.
*'''Peripheral blood''': although easily obtained, peripheral blood is not abundant in MSCs. Their adipogenic potential is higher than that of bone marrow-derived MSCs, but the capacity to differentiate into cells of other lineages is relatively inferior.


=Bibliografia=
=Bibliografia=

Wersja z 11:40, 25 sty 2021

Inne języki:
English • ‎polski

Definition

Adult somatic stem cells are found in multiple tissues and organs, where they play a major role in maintaining homeostasis, as well as tissue plasticity and repair. They have a capacity for self-renewal and differentiation. Their populations, residing in a specific microenvironment of their cellular niche, are heterogenous, dynamic, and made up of both quiescent and active cells. They are considered an attractive material for regenerative medicine, as in comparison with some cell lines they do not carry the risk of forming tumours, are not sourced from embryos, and exhibit low immunogenicity even in the case of allogeneic transplants.

Types of somatic stem cells

Mesenchymal, hematopoietic, neural, or epithelial stem cells are most commonly used.

  • Epithelial stem cells are found e.g. in the small intestine, where they reside in crypts, migrate to villi and differentiate into enterocytes, goblet cells and enteroendocrine cells.
  • Hematopoietic stem cells are most abundant in the bone marrow, but also present in umbilical cord blood, and in a smaller degree peripheral blood. They give rise to all types of blood and immune cells, and have been used successfully in transplantation procedures.
  • Neural stem cells (NSC) reside in two main neurogenic niches of the adult mammalian brain: in the subventricular zone of lateral ventricles and the subgranular zone of the dentate gyrus. They differentiate into neurons, astrocytes and oligodendrocytes, although not all cells of the NSC population are capable of differentiation into all three types. They are considered for regenerative therapy of neurodegenerative diseases, although their primary function is contribute to brain plasticity, learning and memory rather than damage repair. Moreover, therapeutic use of NSCs is challenging as it requires either intracerebral or xenotransplantation, or otherwise is restricted to stimulation of existing cells; there are also concerns about the integration of transplanted NSCs with surrounding tissue, and the effects of such a procedure on brain function.
  • Mesenchymal stem cells (MSC) are the most commonly used somatic stem cells, due to their high proliferation ability, multipotent differentiation potential (although they tend to favourably differentiate into the types of cells found in the tissue source), and immunomodulatory capacity. Originally characterised in bone marrow, MSCs were subsequently found in most vascularized tissues.

Sources of mesenchymal stem cells

  • Bone marrow: abundant in MSCs capable of differentiation into many cell types, including osteoblasts, chondrocytes, hepatocytes etc. Bone marrow MSCs have been proven effective for therapeutic uses, even though their differentiation potential depends on donor characteristics such as age; however, the collection of those cells is one of the most invasive procedures of obtaining MSCs.
  • Adipose tissue: rich in MSCs that are highly proliferative, easily obtainable through liposuction, and capable of differentiating into cells of adipogenic, osteogenic, chondrogenic and myogenic lineages.
  • Skeletal muscle: distinct from the exclusively myogenic satellite cells, muscle-derived MSCs are capable of differentiation into cells of osteogenic and chondrogenic lineages , however, they are primarily used to repair skeletal and cardiac muscle tissue. They are characterised by high self-renewal properties, and can be obtained by biopsy from any muscle of the body.
  • Skin: a source of highly proliferative cells, used especially for dermis reconstitution, e.g. in treatment of burns, but also capable of differentiation into myo-, adipo-, osteo- and chondrocytes, as well as neural and pancreatic cells. MSCs can be also isolated from hair follicles, which is probably the most easy and non-invasive way of obtaining stem cells; hair follicle MSCs can undergo adipogenesis and osteogenesis.
  • Dental pulp: an easily accessible source of MSCs, as dental surgeries are common procedures. Dental pulp MSCs are usually used for bone and neural regeneration; their chondrogenic differentiation capacity is limited compared to other types of MSCs. They might also exhibit decreased proliferation over time.
  • Placenta: abundant in MSCs characterised by high proliferation rates and strong immunosuppressive effects, capable of differentiation into e.g. hepatocytes or pancreatic cells.
  • Amniotic fluid: MSCs sourced from amniotic fluid are mainly used alongside surgery as autologous material to aid organ repair in treatment of congenital birth anomalies such as spina bifida, diaphragmatic hernia or cardiac defects. Amniotic fluid is accessible by needle aspiration, and only small quantities are necessary to establish a cell culture, as they tend to proliferate rapidly.
  • Peripheral blood: although easily obtained, peripheral blood is not abundant in MSCs. Their adipogenic potential is higher than that of bone marrow-derived MSCs, but the capacity to differentiate into cells of other lineages is relatively inferior.

Bibliografia